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Vector quantization is known to be an effective compression scheme to achieve
a low bit rate so as to minimize communication channel bandwidth and also to

reduce digital memory storage while maintaining the necessary fidelity of the data.

However, the large amount of computations required in vector quantizers has been

a handicap in using vector quantization for low-rate source coding. In this article an

adaptive vector quantization algorithm is introduced that is inherently suitable for

simple hardware implementation because it has a simple architecture. It allows fast
encoding and decoding because ft requires only addition and subtraction operations.

I. Introduction

Vector quantization can be used as a source coding

technique for speech and images by mapping a sequence of
continuous or discrete vectors into a digital sequence suit-

able for communication over a digital channel or storage

in a digital medium. The goal is to reduce the volume of

the data for transmission over a digital channel and also

for archiving to a digital storage medium, while preserv-

ing the required fidelity of the data. This is particularly
important to many present and future NASA missions, as

the volume of speech and image data in the foreseeable

future would become prohibitively large for many commu-

nication links or storage devices, It was shown in [1] that
a well-designed vector quantization scheme can provide a

high compression ratio with good reconstructed quality in

the mean-square error sense.

Unlike scalar quantization, where the actual coding of
continuous or discrete samples into discrete quantities is

done on single samples, the input data of a vector quan-
tization encoder are multi-dimensional blocks of data (in-

put vectors). Most traditional vector quantization schemes
[1,2] work as follows: A codebook, which consists of code-

word vectors of the same dimension as the input data vec-

tors, is first generated by training a subset of the source

data by the LBG (Linde-Buzo-Gray) algorithm [1]. The

codebook is then transmitted through the channel. An in-

put vector is encoded by first comparing it with codewords

in the codebook. The codeword closest to the input vector

is chosen as the quantization vector to represent the input
vector. The index of this chosen codeword is then trans-

mitted through the channel. Compression is achieved since

fewer bits are used to represent the codeword index than

the quantized input data. Notice that the generation of
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the codebook and the choice of the best codeword for each

input vector involve computing the distortion between the
input vector and each codeword in the codebook; these

processes are usually computationally intensive, especially

when the codebook size is large. In this article, we in-
troduce an adaptive vector quantization scheme that does

not require codebook generation and is relatively compu-

tationally simple.

Bentley et al. [3] and Elias [4] describe a simple heuris-
tic move-to-front protocol to do lossless high rate data

compression on text data. This protocol maintains a se-

quential list of vectors so that the more frequently accessed

vectors are near the front. In this article, we modify this

protocol and apply it to the design of an adaptive vector

quantization scheme to do lossy low rate data compression

on speech or image data. This vector quantization scheme

exploits the locality of reference by assuming the same vec-

tors are used more frequently over short intervals and then

fall into a long period of disuse. It uses a self-organizing

list, which will be explained in Section II, as an auxiliary

data structure such that the vectors that are more likely to
be transmitted are near the front of the list. This dynamic

data structure has two advantages: the data are presorted

to allow the encoder to efficiently and quickly match the

input vectors with the codewords in the list. It also pro-
vides inherent adaptability to local statistics by keeping

the more recently used codewords in the front of the list

while shifting the long unused codewords out of the list.

This scheme also has implementation advantages. It has
a simple architecture for hardware implementation, and it

only requires addition and subtraction operations to allow

fast encoding and decoding. This scheme is particularly

suitable for real-time compression of audio and video data

(both intraframe coding and interframe coding) that will

be a large part of communications in future NASA mis-
sions. This scheme also has potential uses in commercial

areas like high-definition television and audio/video com-

munications using telephone lines. The results reported

here are, however, preliminary.

Section II outlines the basic algorithm and some vari-
ations of it. Section III describes the performance analysis

method and the experimental results, and Section IV gives

the concluding remarks.

II. Basic Algorithm

Unlike the traditional vector quantization schemes,

this scheme does not require the computationally intensive

process of generating a fixed codebook in the first place.
The encoder and decoder keep an identical codeword ta-

ble of the same size. The table is constructed on the fly

by exploiting the local statistics of the data as the vec-

tor quantization encoder is reading in the input vectors.

The codewords in the table, and the positions of code-

words in the table, are constantly updated according to a

self-organizing protocol such that the more recently used
codewords are near the front of the table. Codewords that

have not been used for a long time would eventually reach

the end of the list and be discarded. The following is a

more quantitative discussion of this algorithm.

Suppose the original p-dimensional digital data file

size is L1 x L2 x ... x Lp pixels and each pixel's inten-

sity is represented by k bits. Let each vector represent a

block of/= sl x s2 x ... x sp pixels, silLi, for i = 1,...,p.
Let the codeword table have size N, N = 2m - 1, and let

the all ones' m-tuple (i.e., m ones'), denoted by a, be re-
served to indicate the transmission of an uncoded vector

while the rest of the m-tuples are used to represent the

indices of codewords in the table. Let r(t) be the input

vector and ci(t) be the ith element in the codeword table

at time t. Both r(t) and ci(t) have the same dimensionality

sis2.., sp. Let D(r(t), ci(t)) be the distortion function as-
sociated with the vector quantization coder. The encoder

computes D(r(t),ci(t)) for i = 0,...,N- 2. Let s be

the index of the codeword corresponding to the minimum

distortion witta r(t). That is,

s = index achieving min D(r(t),ci(t))
i=O,...,N-2

The minimum distortion D(r(t),c_(t)) is then compared

to a preset threshold T. If D(r(t), %(t)) < T, the index s

is sent. The codeword table is then updated as follows:

tmp ,--- %(t) (1)

ci(t+l) _ ci-l(t) i=s,...,1 (2)

co(t + 1) _ trap (3)

If D(r(t),c_(t)) > T,

sent, which is followed

input vector r(t). The
follows:

the reserved all ones' m-tuple a is

by the transmission of the uncoded
codeword table is then updated as

ci(t+l) ,-- ci-l(t) i-N-2,...,1 (4)

co(t + i) ,,-- r(t) (5)

The decoder on the other end maintains the codeword ta-

ble, which is identical to the encoder's. When a legitimate

index s of the codeword table is received, the decoder out-

puts the codeword corresponding to s and updates the ta-
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ble as in Eqs. (1), (2), and (3). When the reserved m-tuple

a and the uncoded input vector r(t) are received, the de-

coder outputs r(t) and updates the tables using Eqs. (4)

and (5). The encoding and the decoding algorithms are

summarized in Fig. 1 and Fig. 2, respectively.

The speed of the vector quantization encoder can

be greatly enhanced by performing a partial search for
the codeword of minimum distortion rather than a full

search. One efficient and simple way is to compute

D(r(t),ei(t)) sequentially along the self-organized list of

codewords and to pick the first codeword c,(t) in the

list with D(r(t), e,(t)) _< T. Another partial search algo-
rithm is to search the first n codewords in the list, where

n < N- 1, and pick the minimum if it is less than

T. In most cases these partial search schemes can give the
codeword of minimum distortion. This is because the code-

words in the table, and the positions of codewords in the

table, are constantly updated according to a self-organizing

protocol such that the more recently used codewords, thus

the most likely codewords with minimum distortion, are

near the front of the table. The performance degradation

from using partial search algorithms instead of full search

is in most cases unnoticeable. The speed of the encoder

can also be increased by choosing a simpler distortion mea-

sure like the sum of absolute difference between pixels in

r(t) and ci(t).

This scheme has the following advantages. It is

inherently suitable for simple hardware implementation.
The encoder and decoder maintain their codeword tables,

which can be implemented using a set of registers, by per-

forming only simple shifting operations. The computation

of distortion between input vector and codeword vector at

the encoder side requires only simple addition and subtrac-

tion operations. It allows fast encoding and decoding, and

unlike many traditional vector quantization schemes that

takc two or more passes over the data, this scheme requires

only one pass.

This scheme has one disadvantage for communications

systems requiring rigid data formatting. Unlike most con-

ventional vector quantization encoding schemes that keep

the compression rate of the input data files constant and

let the distortion drift, this scheme bounds the distortion

and lets the compression rate vary according to the degree
of activity in the data. Thus the sizes of the compressed

data files cannot be a priori specified, and this would cre-

ate difficulties in specifying the data format of the overall

communication system. One way to circumvent this prob-

lem is to iteratively re-encode an input data file using dif-

ferent distortion thresholds until the compressed file size

matches a certain preset data format. Another solution is

to restrict the number of uncoded vectors per data file to

be sent such that the compressed file size remains constant

for each data file. The first solution increases the overall

computation time and the second solution degrades the
overall distortion performance.

III. Performance Analysis and
Experimental Results

The compression ratio of a vector quantization scheme

on a data file is defined to be the ratio of the original data

file size to the compressed data file size. A distortion mea-

sure D is an assignment of a cost D(r(t), ci(t)) of reproduc-

ing any input vector r(t) by a code vector ci(t). Given such
a distortion measure, the performance of a vectorquanti-

zation scheme can be measured in terms of the compres-

sion ratio versus the average distortion E[D(r(t), ci(t))] be-

tween the input and the final reproduction.

A good distortion measure should be computationally

tractable to allow easy analysis and subjectively meaning-

ful so that large or small measured distortions closely cor-

respond to bad and good subjective quality. In this article,

we choose to use the conventional squared error distortion

measure, which is defined as follows:

D(r(t),ci(t)) = I]r(t) - ci(t)ll

I-1

_(_(t)- _(t)) 2 (6)
i=0

It is also common practice to measure the performance

of a system by the signal-to-noise ratio (or signal-to-

quantization-noise l:atio) in dB. That is,

SNR =

22k
101°g_0 1 v-,L,-1 ,---,L_-I, " _.

_i=0 2-,i=o (Xorig.t*,J)- Xdecoded(i,J)) 2

(_)

where z(i,j) is the intensity value of the (i,j)-th pixel.

Both planetary and nonplanetary images (8 bits per

pixel) with various degrees of activity were used in this
data compression experiment, and the compression ra-

tio, the root-mean-square-error per pixel, and SNR per-
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formance are tabulated in Table 1. The original picture

and a decoded picture (compression ratio 8.325 and SNR
34.68 dB) of "Mercury" are given in Fig. 3 and Fig. 4,

respectively. The original picture and a decoded picture

(compression ratio 4.163 and SNR 31.57 dB) of "USC411"

are given in Fig. 5 and Fig. 6, respectively.

An inherent disadvantage of low-rate vector quantiza-

tion image coding is the annoying presence of blockiness in
the decoded image. Because of the mismatch between the

pixel values of two spatially adjacent codewords, discon-

tinuity is developed at the block boundaries and a stair-

case effect shows at the edges. This degradation is usually

the most noticeable and most annoying quantization error.

Simple image enhancement techniques such as prefiltering

and postfiltering can be applied to the decoded image to

eliminate the obvious blockiness in the decoded version of

the picture.

IV. Concluding Remarks

In this article, a locally adaptive vector quantization

scheme, which has a simple architecture to facilitate hard-

ware implementation, was introduced. This scheme adapts

efficiently to local statistics by using a simple heuristic
method for self-organizing sequential search introduced in

[3] and [4]. This scheme is fast, simple and robust, and
has potential use for real-time compression of audio and
video data in future NASA missions and in commercial

areas such as high-definition television, facsimile, and au-

dio/video communications using telephone lines. Perfor-

mance in noise is a big, open issue.

References

[1] R. M. Gray, "Vector Quantization," IEEE ASSP Magazine, April 1984, vol. 1,

pp. 4-29.

[2] N. Jayant and P. Noll, Digital Coding of Waveforms-Principles and Applica-

tions to Speech and Video, Prentice-Hall, 1984.

[3] J. Bentley, D. Sleator, R. Tarjan, and V. Wei, "A Locally Adaptive Data Com-
pression Scheme," Communications of the ACM, April 1986, vol. 29, pp. 320-
330.

[4] P. Elias, "Interval and Recency Rank Source Coding: Two On-Line Adaptive
Variable-Length Schemes," IEEE Transactions on Information Theory, Jan-

uary 1987, vol. 33, pp. 3-10.

217



Table 1. Compression ratio versus distortion performances

File name File size C.R. RMSE/pixel SNR, dB

Mercury 256 × 256 8,32 4.72 34,68

5.49 3.66 36.90

USC411 256 x 256 4.16 6.75 31.57

2.58 4.60 34.85

Saturn6 800 × 800 18.75 7.40 30.75

12.54 3.70 36.80

9.29 3.00 38.63

Lena 512 × 512 15.94 20.88 21.77

6.91 14.12 25.16

3.91 10.08 28.10

2.58 7.42 30.75
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I SEND INDEX s t

c i (t+l) _1-- ci. 1 (t)
i=s, ...1

I GET INPUT VECTOR r(t) J

s = rain "1 D(rlt}, ciltl)

i=1, ...N-2

I
t SEND a FOLLOWED BY IUNCODED VECTOR r(t)

TABLE UPDATE

c i (t+l)-._l-- c i_1 (t)
i = N-2 ...1

Fig. 1, Encoding algorithm.

I READTHE UNCODED
VECTOR r(t)

I SEND r(t) AS OUTPUT L

READ THE INDEXs t

TABLE UPDATE

SEND cs(t) IN TABLE
AS OUTPUT

I
c i (t+l) -_1-- ci. 1 (t) ]

i = N-2, ...1 I

Co(t+1) _ r(t) J

trap-41-- Cs(t)

I ci(t+l) _l_Ci.l(t )i=s,,..1

Co (t+l}_l-- trap

Fig. 2, Decoding algorithm.
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Fig. 3. Original image of "Mercury". Fig. 5. Original Image of "USC411".

Fig. 4. Reconstructed Image of "Mercury", Fig. 6. Reconstructed image of "USC411".
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